introduction
we learned the basics of phasor algebra in the last post. now, weβre going to take it a step further and learn how to take integrals and derivatives of phasors. this is where things get really interesting, because it opens up a whole new world of possibilities for analyzing ac circuits.
letβs start with the derivative of a sinusoid in phasor form. if we have a sinusoid like this:
v ( t ) = R { V m e j ( Ο t + Ο ) } = V m cos β‘ ( Ο t + Ο ) v(t) = \mathbb{R}\{V_m e^{j(\omega t + \phi)}\} = V_m \cos(\omega t + \phi) v ( t ) = R { V m β e j ( Ο t + Ο ) } = V m β cos ( Ο t + Ο )
V β = V m e j Ο = V m β Ο \vec{V} = V_me^{j\phi} = V_m\angle\phi V = V m β e j Ο = V m β β Ο
then the derivative of the sinusoid is:
j Ο V β j\omega \vec{V} jΟ V
proof
βΉοΈ sin β‘ ( x + 90 β ) = cos β‘ ( x ) \sin(x + 90^{\circ}) = \cos(x) sin ( x + 9 0 β ) = cos ( x )
d d t [ v ( t ) ] = β Ο V m sin β‘ ( Ο t + Ο ) = Ο V m cos β‘ ( Ο t + Ο + 90 β ) \frac{d}{dt}[v(t)] = -\omega V_m \sin(\omega t + \phi) = \omega V_m \cos(\omega t + \phi + 90^{\circ}) d t d β [ v ( t )] = β Ο V m β sin ( Ο t + Ο ) = Ο V m β cos ( Ο t + Ο + 9 0 β )
βΉοΈ A cos β‘ ( Ο t + Ο ) = R { A e j ( Ο t + Ο ) } A\cos(\omega t + \phi) = \mathbb{R}\{Ae^{j(\omega t + \phi)}\} A cos ( Ο t + Ο ) = R { A e j ( Ο t + Ο ) }
d d t [ v ( t ) ] = R { Ο V m e j ( Ο t + Ο + 90 β ) } \frac{d}{dt}[v(t)] = \mathbb{R}\{\omega V_me^{j(\omega t + \phi + 90^{\circ})}\} d t d β [ v ( t )] = R { Ο V m β e j ( Ο t + Ο + 9 0 β ) }
d d t [ v ( t ) ] = R { Ο V m e j Ο t e j Ο e j 90 β } \frac{d}{dt}[v(t)] = \mathbb{R}\{\omega V_me^{j\omega t}e^{j\phi}e^{j90^{\circ}}\} d t d β [ v ( t )] = R { Ο V m β e jΟ t e j Ο e j 9 0 β }
and we know that V β = V m e j Ο \vec{V} = V_me^{j\phi} V = V m β e j Ο is the phasor representation of the sinusoid, so we can write:
d d t [ v ( t ) ] = R { Ο e j Ο t e j 90 β V β } \frac{d}{dt}[v(t)] = \mathbb{R}\{\omega e^{j\omega t}e^{j90^{\circ}}\vec{V}\} d t d β [ v ( t )] = R { Ο e jΟ t e j 9 0 β V }
βΉοΈ e j Ο = cos β‘ Ο + j sin β‘ ( Ο ) β e j 90 β = cos β‘ 90 β + j sin β‘ ( 90 β ) = j e^{j\phi} = \cos{\phi} + j\sin(\phi) \Rightarrow e^{j90^{\circ}} = \cos{90^{\circ}} + j\sin(90^{\circ}) = j e j Ο = cos Ο + j sin ( Ο ) β e j 9 0 β = cos 9 0 β + j sin ( 9 0 β ) = j
d d t [ v ( t ) ] = R { j Ο V β e j Ο t } \frac{d}{dt}[v(t)] = \mathbb{R}\{j\omega \vec{V}e^{j\omega t}\} d t d β [ v ( t )] = R { jΟ V e jΟ t }
and if we convert this equation to phasor domain, we get:
d d t [ v ( t ) ] β j Ο V β \frac{d}{dt}[v(t)] \Leftrightarrow j\omega \vec{V} d t d β [ v ( t )] β jΟ V
again, if we have a sinusoid like this:
v ( t ) = R { V m e j ( Ο t + Ο ) } = V m cos β‘ ( Ο t + Ο ) v(t) = \mathbb{R}\{V_m e^{j(\omega t + \phi)}\} = V_m \cos(\omega t + \phi) v ( t ) = R { V m β e j ( Ο t + Ο ) } = V m β cos ( Ο t + Ο )
V β = V m e j Ο = V m β Ο \vec{V} = V_me^{j\phi} = V_m\angle\phi V = V m β e j Ο = V m β β Ο
then the integral of the sinusoid is:
V β j Ο \frac{\vec{V}}{j\omega} jΟ V β
proof
β« v ( t ) d t = V m β« cos β‘ ( Ο t + Ο ) d t \int v(t) dt = V_m \int \cos(\omega t + \phi) dt β« v ( t ) d t = V m β β« cos ( Ο t + Ο ) d t
β« v ( t ) d t = V m Ο sin β‘ ( Ο t + Ο ) \int v(t) dt = \frac{V_m}{\omega} \sin(\omega t + \phi) β« v ( t ) d t = Ο V m β β sin ( Ο t + Ο )
βΉοΈ sin β‘ ( x + 90 β ) = cos β‘ ( x ) \sin(x + 90^{\circ}) = \cos(x) sin ( x + 9 0 β ) = cos ( x )
β« v ( t ) d t = V m Ο cos β‘ ( Ο t + Ο β 90 β ) \int v(t) dt = \frac{V_m}{\omega} \cos(\omega t + \phi - 90^{\circ}) β« v ( t ) d t = Ο V m β β cos ( Ο t + Ο β 9 0 β )
βΉοΈ A cos β‘ ( Ο t + Ο ) = R { A e j ( Ο t + Ο ) } A\cos(\omega t + \phi) = \mathbb{R}\{Ae^{j(\omega t + \phi)}\} A cos ( Ο t + Ο ) = R { A e j ( Ο t + Ο ) }
β« v ( t ) d t = R { V m Ο e j ( Ο t + Ο β 90 β ) } \int v(t) dt = \mathbb{R}\{\frac{V_m}{\omega}e^{j(\omega t + \phi - 90^{\circ})}\} β« v ( t ) d t = R { Ο V m β β e j ( Ο t + Ο β 9 0 β ) }
β« v ( t ) d t = R { V m Ο e j Ο e j Ο e β j 90 β } \int v(t) dt = \mathbb{R}\{\frac{V_m}{\omega}e^{j\omega}e^{j\phi}e^{-j90^{\circ}}\} β« v ( t ) d t = R { Ο V m β β e jΟ e j Ο e β j 9 0 β }
and we know that V β = V m e j Ο \vec{V} = V_me^{j\phi} V = V m β e j Ο is the phasor representation of the sinusoid, so we can write:
β« v ( t ) d t = R { 1 Ο V β e j Ο e β j 90 β } \int v(t) dt = \mathbb{R}\{\frac{1}{\omega}\vec{V}e^{j\omega}e^{-j90^{\circ}}\} β« v ( t ) d t = R { Ο 1 β V e jΟ e β j 9 0 β }
βΉοΈ e j Ο = cos β‘ Ο + j sin β‘ ( Ο ) β e β j 90 β = cos β‘ β 90 β + j sin β‘ ( β 90 β ) = β j e^{j\phi} = \cos{\phi} + j\sin(\phi) \Rightarrow e^{-j90^{\circ}} = \cos{-90^{\circ}} + j\sin(-90^{\circ}) = -j e j Ο = cos Ο + j sin ( Ο ) β e β j 9 0 β = cos β 9 0 β + j sin ( β 9 0 β ) = β j
β« v ( t ) d t = R { 1 j Ο V β e j Ο } \int v(t) dt = \mathbb{R}\{\frac{1}{j\omega}\vec{V}e^{j\omega}\} β« v ( t ) d t = R { jΟ 1 β V e jΟ }
and if we convert this equation to phasor domain, we get:
β« v ( t ) d t β 1 j Ο V β \int v(t) dt \Leftrightarrow \frac{1}{j\omega}\vec{V} β« v ( t ) d t β jΟ 1 β V
summary
the derivative of a sinusoid in phasor form means multiplying the phasor by j Ο j\omega jΟ .
d d t [ v ( t ) ] β j Ο V β \frac{d}{dt}[v(t)] \Leftrightarrow j\omega \vec{V} d t d β [ v ( t )] β jΟ V
the integral of a sinusoid in phasor form means dividing the phasor by j Ο j\omega jΟ .
β« v ( t ) d t β 1 j Ο V β \int v(t) dt \Leftrightarrow \frac{1}{j\omega}\vec{V} β« v ( t ) d t β jΟ 1 β V
this is a powerful tool for analyzing ac circuits, and it makes it much easier to work with sinusoids in phasor form.