2 min read

3 - doing algebra with rotating arrows#2 - your introduction to ac circuit analysis

table of contents

introduction

we learned the basics of phasor algebra in the last post. now, we’re going to take it a step further and learn how to take integrals and derivatives of phasors. this is where things get really interesting, because it opens up a whole new world of possibilities for analyzing ac circuits.


derivative of a sinusoid in phasor form

let’s start with the derivative of a sinusoid in phasor form. if we have a sinusoid like this:

v(t)=R{Vmej(Ο‰t+Ο•)}=Vmcos⁑(Ο‰t+Ο•)v(t) = \mathbb{R}\{V_m e^{j(\omega t + \phi)}\} = V_m \cos(\omega t + \phi)

Vβƒ—=VmejΟ•=Vmβˆ Ο•\vec{V} = V_me^{j\phi} = V_m\angle\phi

then the derivative of the sinusoid is:

jωV⃗j\omega \vec{V}

proof

ℹ️ sin⁑(x+90∘)=cos⁑(x)\sin(x + 90^{\circ}) = \cos(x)

ddt[v(t)]=βˆ’Ο‰Vmsin⁑(Ο‰t+Ο•)=Ο‰Vmcos⁑(Ο‰t+Ο•+90∘)\frac{d}{dt}[v(t)] = -\omega V_m \sin(\omega t + \phi) = \omega V_m \cos(\omega t + \phi + 90^{\circ})

ℹ️ Acos⁑(Ο‰t+Ο•)=R{Aej(Ο‰t+Ο•)}A\cos(\omega t + \phi) = \mathbb{R}\{Ae^{j(\omega t + \phi)}\}

ddt[v(t)]=R{Ο‰Vmej(Ο‰t+Ο•+90∘)}\frac{d}{dt}[v(t)] = \mathbb{R}\{\omega V_me^{j(\omega t + \phi + 90^{\circ})}\}

ddt[v(t)]=R{Ο‰VmejΟ‰tejΟ•ej90∘}\frac{d}{dt}[v(t)] = \mathbb{R}\{\omega V_me^{j\omega t}e^{j\phi}e^{j90^{\circ}}\}

and we know that V⃗=Vmejϕ\vec{V} = V_me^{j\phi} is the phasor representation of the sinusoid, so we can write:

ddt[v(t)]=R{Ο‰ejΟ‰tej90∘Vβƒ—}\frac{d}{dt}[v(t)] = \mathbb{R}\{\omega e^{j\omega t}e^{j90^{\circ}}\vec{V}\}

ℹ️ ejΟ•=cos⁑ϕ+jsin⁑(Ο•)β‡’ej90∘=cos⁑90∘+jsin⁑(90∘)=je^{j\phi} = \cos{\phi} + j\sin(\phi) \Rightarrow e^{j90^{\circ}} = \cos{90^{\circ}} + j\sin(90^{\circ}) = j

ddt[v(t)]=R{jωV⃗ejωt}\frac{d}{dt}[v(t)] = \mathbb{R}\{j\omega \vec{V}e^{j\omega t}\}

and if we convert this equation to phasor domain, we get:

ddt[v(t)]⇔jΟ‰Vβƒ—\frac{d}{dt}[v(t)] \Leftrightarrow j\omega \vec{V}


integral of a sinusoid in phasor form

again, if we have a sinusoid like this:

v(t)=R{Vmej(Ο‰t+Ο•)}=Vmcos⁑(Ο‰t+Ο•)v(t) = \mathbb{R}\{V_m e^{j(\omega t + \phi)}\} = V_m \cos(\omega t + \phi)

Vβƒ—=VmejΟ•=Vmβˆ Ο•\vec{V} = V_me^{j\phi} = V_m\angle\phi

then the integral of the sinusoid is:

V⃗jω\frac{\vec{V}}{j\omega}

proof

∫v(t)dt=Vm∫cos⁑(Ο‰t+Ο•)dt\int v(t) dt = V_m \int \cos(\omega t + \phi) dt

∫v(t)dt=VmΟ‰sin⁑(Ο‰t+Ο•)\int v(t) dt = \frac{V_m}{\omega} \sin(\omega t + \phi)

ℹ️ sin⁑(x+90∘)=cos⁑(x)\sin(x + 90^{\circ}) = \cos(x)

∫v(t)dt=VmΟ‰cos⁑(Ο‰t+Ο•βˆ’90∘)\int v(t) dt = \frac{V_m}{\omega} \cos(\omega t + \phi - 90^{\circ})

ℹ️ Acos⁑(Ο‰t+Ο•)=R{Aej(Ο‰t+Ο•)}A\cos(\omega t + \phi) = \mathbb{R}\{Ae^{j(\omega t + \phi)}\}

∫v(t)dt=R{VmΟ‰ej(Ο‰t+Ο•βˆ’90∘)}\int v(t) dt = \mathbb{R}\{\frac{V_m}{\omega}e^{j(\omega t + \phi - 90^{\circ})}\}

∫v(t)dt=R{VmΟ‰ejΟ‰ejΟ•eβˆ’j90∘}\int v(t) dt = \mathbb{R}\{\frac{V_m}{\omega}e^{j\omega}e^{j\phi}e^{-j90^{\circ}}\}

and we know that V⃗=Vmejϕ\vec{V} = V_me^{j\phi} is the phasor representation of the sinusoid, so we can write:

∫v(t)dt=R{1Ο‰Vβƒ—ejΟ‰eβˆ’j90∘}\int v(t) dt = \mathbb{R}\{\frac{1}{\omega}\vec{V}e^{j\omega}e^{-j90^{\circ}}\}

ℹ️ ejΟ•=cos⁑ϕ+jsin⁑(Ο•)β‡’eβˆ’j90∘=cosβ‘βˆ’90∘+jsin⁑(βˆ’90∘)=βˆ’je^{j\phi} = \cos{\phi} + j\sin(\phi) \Rightarrow e^{-j90^{\circ}} = \cos{-90^{\circ}} + j\sin(-90^{\circ}) = -j

∫v(t)dt=R{1jΟ‰Vβƒ—ejΟ‰}\int v(t) dt = \mathbb{R}\{\frac{1}{j\omega}\vec{V}e^{j\omega}\}

and if we convert this equation to phasor domain, we get:

∫v(t)dt⇔1jΟ‰Vβƒ—\int v(t) dt \Leftrightarrow \frac{1}{j\omega}\vec{V}


summary

the derivative of a sinusoid in phasor form means multiplying the phasor by jωj\omega.

ddt[v(t)]⇔jΟ‰Vβƒ—\frac{d}{dt}[v(t)] \Leftrightarrow j\omega \vec{V}

the integral of a sinusoid in phasor form means dividing the phasor by jωj\omega.

∫v(t)dt⇔1jΟ‰Vβƒ—\int v(t) dt \Leftrightarrow \frac{1}{j\omega}\vec{V}

this is a powerful tool for analyzing ac circuits, and it makes it much easier to work with sinusoids in phasor form.